

Overview

- Motivation
- Data Acquisition
- Data Reconstruction
- Rigid Registration
- Non-Rigid Registration
- Statistical Face Model
- Results
- Conclusion/Future Work
- References

Motivation

- Different portraits of Augustus:
 - What makes us recognize his portrait?
 - Which features are inspired by the classical concept of beauty and god-like appearance?
 - Which features can be attributed to the real person?
- Archaeologists count the strands of hair:
 - Little effort was made to capture his identity using the characteristic geometry of his face

Data Acquisition - "Antikensammlung" Erlangen

- We started to scan busts of the famous emperor
 - Up to now: 15 busts of the "Antikensammlung" Erlangen
 - Third largest collection of antiques in Bavaria
 - Main focus on Greek and Roman historical artefacts
 - 450 plaster casts and 900 artefacts
 - Goal: Build a database of the emperors facial geometry

Data Acquisition - Setup

- We use a portable structured light scanner
 - DAVID SLS-1
 - We fuse multiple scans to obtain a good reconstruction

Data Reconstruction

- We acquire multiple 3D-Scans
 - 3D-Scans not aligned
 - Compute optimal rigid alignment
 - [Besl92, Chen92]
 - Merge scans to compute a single surface
 - Poisson Surface Reconstruction
 - [Kazhdan06]

➤ High-Quality 3D-Models

Data Reconstruction - Results

- 15 busts of the "Antikensammlung" Erlangen digitized
 - We want to scan more bust in the future

Data Reconstruction - Problem

- All the 3D-Scans have different topology
 - We do **not** know any corresponding regions
 - Which part of the model correspond to the nose, eyes, etc...

Rigid Registration

- We start with a sparse set of manually placed correspondences
 - Template mask and 3D-Scan
- Compute best rigid transformation [Schönemann66] and scaling
 - Transform mask in the coordinate system of the 3D-Scan:
 - Same orientation, position and scale

Non-Rigid Registration

- We fit the template mask using non-rigid registration
 - Warp template such that it matches the input [Süßmuth10]
 - Two steps:
 - Coarse Alignment
 - » Deformation Graph [Sumner 07]
 - » Minimize distance to target using distance field
 - Fine Alignment
 - » Optimize vertex positions
 - » ARAP Regularization [Sorkine07]
 - » Point-point distance measure

Non-Rigid Registration - 2

- Result is a set of masks with the same topology
 - Dense set of correspondences
 - Basis for further processing

Statistical Face Model

Database:

- 8 undamaged busts:
 - 3x Augustus
 - 2x Livia
 - 2x Trajan
 - 1x Titus

- Mathematical space spanned by the faces [Blanz99, Blanz07]
 - Principal Component Analysis (PCA)
- Visually explore the variations in the datasets

Statistical Face Model - 2

- Small number of degrees of freedom
 - Use coefficients as feature vectors (DNA)?
 - Needs a more detailed analysis:
 - More scans, more tests, etc...

Results

Videos:

Conclusion/Future Work

- Foundation for Statistical Analysis are dense correspondences
 - Non-Rigid Registration
- In the future we plan to:
 - Enlarge our database
 - More busts of the emperor
 - Other classical rulers
 - Descriptors:
 - Objectively distinguish between rulers

References

[Blanz99]

Blanz V., Vetter T.: A morphable model for the synthesis of 3D faces. In Proceedings of Siggraph'99, pages 187–194, 1999.

• [Blanz07]

Blanz V., Scherbaum K., Seidel H-P.: Fitting a morphable model to 3D scans of faces. In Proceedings of ICCV'07, pages 1–8, 2007.

• [Besl92]

Besl P. J., McKay N. D.: A method for registration of 3-d shapes. *IEEE Trans. Pattern Anal. Mach. Intell.* 14, 2 (1992), 239–256.

• [Chen92]

Chen Y., Medioni G.: Object modelling by registration of multiple range images. *Image and Vision Computing 10*, 3 (1992), 145–155.

• [Kazhdan06]

Kazhdan M., Bolitho M., Hoppe H.: Poisson surface reconstruction. In *Proceedings of the fourth Eurographics symposium on Geometry processing* (Aire-la-Ville, Switzerland, Switzerland, 2006), SGP '06, Eurographics Association, pp. 61–70. 1

• [Schönemann66]

Schönemann P. H.: A Generalized Solution of the Orthogonal Procrustes Problem. Psychometrika 31, 1 (1966), 1-10.

[Sorkine07]

Sorkine O., Akexa M.: As-rigid-as-possible surface modeling. In SGP '07: Proceedings of the fifth Eurographics symposium on Geometry processing (2007), pp. 109–116.

[Sumner07]

Sumner R., Schmid J., Pauly M.: Embedded deformation for shape manipulation. ACM Transactions on Graphics 2007; 26(3): Article 80.

[Süßmuth10]

Süßmuth J., Zollhöfer M., Greiner G.: Animation transplantation. Computer Animation and Virtual Worlds 2010; 21(3–4): 173–182.

